Bivariate and Multivariate Data Cloning through Non Linear Regression Models
نویسندگان
چکیده
Nonlinear regression analysis holds significant popularity in mathematical, engineering, and social science domains. Disciplines like financial matters, biology, natural chemistry have broadly utilized nonlinear models (NLRMs). Cloned datasets their own importance such areas which provide the same fit of bivariate multivariate for actual datasets. This article presents a sequence cloned that give exactly models.
منابع مشابه
Estimation of Count Data using Bivariate Negative Binomial Regression Models
Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...
متن کاملDetecting non-causal artifacts in multivariate linear regression models
We consider linear models where d potential causes X1, . . . , Xd are correlated with one target quantity Y and propose a method to infer whether the association is causal or whether it is an artifact caused by overfitting or hidden common causes. We employ the idea that in the former case the vector of regression coefficients has ‘generic’ orientation relative to the covariance matrix ΣXX of X...
متن کاملGeneralized bivariate count data regression models
This paper proposes a flexible bivariate count data regression model that nests the bivariate negative binomial regression. An application to the demand for health services is given. 2000 Elsevier Science S.A. All rights reserved.
متن کاملOn the Generalizability of Linear and Non-Linear Region of Interest-Based Multivariate Regression Models for fMRI Data
In contrast to conventional, univariate analysis, various types of multivariate analysis have been applied to functional magnetic resonance imaging (fMRI) data. In this paper, we compare two contemporary approaches for multivariate regression on task-based fMRI data: linear regression with ridge regularization and non-linear symbolic regression using genetic programming. The data for this proje...
متن کاملLinear regression for bivariate censored data via multiple imputation.
Bivariate survival data arise, for example, in twin studies and studies of both eyes or ears of the same individual. Often it is of interest to regress the survival times on a set of predictors. In this paper we extend Wei and Tanner's multiple imputation approach for linear regression with univariate censored data to bivariate censored data. We formulate a class of censored bivariate linear re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific inquiry and review
سال: 2023
ISSN: ['2521-2427', '2521-2435']
DOI: https://doi.org/10.32350/sir.73.01