Bivariate and Multivariate Data Cloning through Non Linear Regression Models

نویسندگان

چکیده

Nonlinear regression analysis holds significant popularity in mathematical, engineering, and social science domains. Disciplines like financial matters, biology, natural chemistry have broadly utilized nonlinear models (NLRMs). Cloned datasets their own importance such areas which provide the same fit of bivariate multivariate for actual datasets. This article presents a sequence cloned that give exactly models.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Count Data using Bivariate Negative Binomial Regression Models

Abstract Negative binomial regression model (NBR) is a popular approach for modeling overdispersed count data with covariates. Several parameterizations have been performed for NBR, and the two well-known models, negative binomial-1 regression model (NBR-1) and negative binomial-2 regression model (NBR-2), have been applied. Another parameterization of NBR is negative binomial-P regression mode...

متن کامل

Detecting non-causal artifacts in multivariate linear regression models

We consider linear models where d potential causes X1, . . . , Xd are correlated with one target quantity Y and propose a method to infer whether the association is causal or whether it is an artifact caused by overfitting or hidden common causes. We employ the idea that in the former case the vector of regression coefficients has ‘generic’ orientation relative to the covariance matrix ΣXX of X...

متن کامل

Generalized bivariate count data regression models

This paper proposes a flexible bivariate count data regression model that nests the bivariate negative binomial regression. An application to the demand for health services is given.  2000 Elsevier Science S.A. All rights reserved.

متن کامل

On the Generalizability of Linear and Non-Linear Region of Interest-Based Multivariate Regression Models for fMRI Data

In contrast to conventional, univariate analysis, various types of multivariate analysis have been applied to functional magnetic resonance imaging (fMRI) data. In this paper, we compare two contemporary approaches for multivariate regression on task-based fMRI data: linear regression with ridge regularization and non-linear symbolic regression using genetic programming. The data for this proje...

متن کامل

Linear regression for bivariate censored data via multiple imputation.

Bivariate survival data arise, for example, in twin studies and studies of both eyes or ears of the same individual. Often it is of interest to regress the survival times on a set of predictors. In this paper we extend Wei and Tanner's multiple imputation approach for linear regression with univariate censored data to bivariate censored data. We formulate a class of censored bivariate linear re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific inquiry and review

سال: 2023

ISSN: ['2521-2427', '2521-2435']

DOI: https://doi.org/10.32350/sir.73.01